The question of how to produce a smooth interpolating curve from a stream of uncertainty regions, which become available sequentially, is addressed in this paper. To this end, we formalize the concept of real-time interpolator (RTI): a trainable recurrent unit that reconstructs smooth signals that are consistent with the received uncertainty regions in an online manner. More specifically, an RTI works under the requirement of reconstructing a section of the signal immediately after an uncertainty region is revealed (zero delay), without changing the reconstructed signal in the previous sections. Particularly, this work formulates the design of spline-based RTIs and proposes a data-driven training procedure, which minimizes the average curvature of the interpolated signals over a set of example sequences. These sequences are representative of the nature of the data sequence to be interpolated, allowing to tailor the RTI to any specific signal source. Our overall design allows for different possible schemes due to its modular structure, but in this work, we present two approaches, namely, the parametrized RTI and the recurrent neural network (RNN)-based RTI, including their architectures and properties. Experimental results show that the two proposed RTIs can be trained to achieve improved performance (in terms of the curvature loss metric) with respect to a myopic-type RTI that only exploits the local information at each time step while maintaining smooth, zero-delay, and consistency requirements.


翻译:本文将论述如何从一系列不稳定区域产生一个顺畅的内插曲线的问题,这种曲线可以按顺序提供。为此,我们正式确定实时内插器(RTI)的概念:一个经过训练的经常性单位,以在线方式重建与所收到的不确定区域相一致的光滑信号;更具体地说,在发现不确定区域后立即重建信号的一个部分(零延迟),同时不改变前几节中重建的信号。特别是,这项工作设计了基于样板的 RTI 设计,并提出了一个数据驱动的培训程序,最大限度地减少一套示例序列上的内插信号的平均曲线。这些序列代表了数据序列的性质,以在线方式与收到的不确定区域相一致,使RTI能够根据任何具体的信号源进行调整。我们的总体设计允许由于其模块结构而可能采用不同的计划,但在此工作中,我们只提出两种方法,即:基于Sprettetrline的 RTI和基于经常性的网络(RNNN),该程序将内部信号的平均曲线缩略度降到最低限度。这些序列代表了数据序列的性质,使RTI的进度能够按照我所培训的准确性要求改进的每个格式,使RTI的进度显示业绩结果,而使Rtalalalalalalal-res

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月5日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员