Fact-based Visual Question Answering (FVQA) requires external knowledge beyond visible content to answer questions about an image, which is challenging but indispensable to achieve general VQA. One limitation of existing FVQA solutions is that they jointly embed all kinds of information without fine-grained selection, which introduces unexpected noises for reasoning the final answer. How to capture the question-oriented and information-complementary evidence remains a key challenge to solve the problem. In this paper, we depict an image by a multi-modal heterogeneous graph, which contains multiple layers of information corresponding to the visual, semantic and factual features. On top of the multi-layer graph representations, we propose a modality-aware heterogeneous graph convolutional network to capture evidence from different layers that is most relevant to the given question. Specifically, the intra-modal graph convolution selects evidence from each modality and cross-modal graph convolution aggregates relevant information across different modalities. By stacking this process multiple times, our model performs iterative reasoning and predicts the optimal answer by analyzing all question-oriented evidence. We achieve a new state-of-the-art performance on the FVQA task and demonstrate the effectiveness and interpretability of our model with extensive experiments.
翻译:以事实为基础的视觉问题解答(FVQA)要求有超越可见内容的外部知识,以解答关于图像的问题,该图像具有挑战性,但对于实现一般VQA是不可或缺的。 现有FVQA解决方案的一个局限性是,它们联合嵌入所有类型的信息,而没有细微选择,这为最后答案的推理带来了出乎意料的噪音。 如何捕捉以问题为导向的和信息补充证据仍然是解决问题的关键挑战。 在本文中,我们用多式混合图解描绘图像,该图解包含与视觉、语义和事实特征相对应的多层信息。在多层图解表解外,我们提出一个模式-有意识的多元图解图解变网络,以捕取不同层次上与特定问题最相关的证据。具体地说,内部图解剖图从每一种模式和跨式图解剖图综合信息中挑选证据,以不同方式解决这一问题。我们模型多次堆叠这一过程,通过分析所有以问题为导向的证据来进行迭替推理和预测最佳答案。我们实现了新的模型,我们用FVA任务的有效性和广度的模型,并展示了我们的任务的可操作性。