Causal mediation analysis has historically been limited in two important ways: (i) a focus has traditionally been placed on binary treatments and static interventions, and (ii) direct and indirect effect decompositions have been pursued that are only identifiable in the absence of intermediate confounders affected by treatment. We present a theoretical study of an (in)direct effect decomposition of the population intervention effect, defined by stochastic interventions jointly applied to the treatment and mediators. In contrast to existing proposals, our causal effects can be evaluated regardless of whether a treatment is categorical or continuous and remain well-defined even in the presence of intermediate confounders affected by treatment. Our (in)direct effects are identifiable without a restrictive assumption on cross-world counterfactual independencies, allowing for substantive conclusions drawn from them to be validated in randomized controlled trials. Beyond the novel effects introduced, we provide a careful study of nonparametric efficiency theory relevant for the construction of flexible, multiply robust estimators of our (in)direct effects, while avoiding undue restrictions induced by assuming parametric models of nuisance parameter functionals. To complement our nonparametric estimation strategy, we introduce inferential techniques for constructing confidence intervals and hypothesis tests, and discuss open source software implementing the proposed methodology.


翻译:从历史上看,对因果关系的分析历来限于两个重要方面:(一) 传统上侧重于二元治疗和静态干预,传统上限于二元治疗和静态干预,以及(二) 追求的直接和间接影响分解只有在没有受治疗影响的中间同流体的情况下才能确定,而这种分解只有在没有受治疗影响的中间同理者的情况下才能确定,我们提出对人口干预效应的(间接)直接分解进行理论研究的理论研究,由共同适用于治疗和调解人的随机分析干预措施界定,对人口干预效应进行(间接)直接分解,人口干预效应的间接分解,由共同适用于治疗和调解者共同适用治疗和调解者。与现有提案不同,我们的因果关系影响可以被评估,而不论治疗是绝对的还是连续的,即使在受治疗影响的中居居居者在场的情况下,也仍然得到明确界定。我们(间接)的效应是可以识别的,而对于跨世界反事实上的不依赖性依赖性不具有直接和间接影响,但只有在没有在缺乏受治疗者的情况下,而且只有在没有在不受限制的情况下,在不受限制的情况下,我们(间接的)对跨世界反现实的不相偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2021年8月8日
专知会员服务
53+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
25+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Risk and optimal policies in bandit experiments
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2021年8月8日
专知会员服务
53+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
25+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员