We analyze an algorithmic question about immersion theory: for which $m$, $n$, and $CAT=\mathbf{Diff}$ or $\mathbf{PL}$ is the question of whether an $m$-dimensional $CAT$-manifold is immersible in $\mathbb{R}^n$ decidable? As a corollary, we show that the smooth embeddability of an $m$-manifold with boundary in $\mathbb{R}^n$ is undecidable when $n-m$ is even and $11m \geq 10n+1$.
翻译:我们分析了关于沉浸理论的算法问题:对于这种理论,美元、美元和美元是美元,美元是美元,美元是美元,美元是美元,美元是美元,美元是美元,美元是美元,美元是美元,美元是美元,美元是美元,美元是美元,美元是美元,美元是美元,美元是美元,美元是美元,美元是美元,美元是美元,美元是美元,美元是美元,美元是美元,美元是美元。