We study the behavior of Haar coefficients in Besov and Triebel-Lizorkin spaces on $\mathbb{R}$, for a parameter range in which the Haar system is not an unconditional basis. First, we obtain a range of parameters, extending up to smoothness $s<1$, in which the spaces $F^s_{p,q}$ and $B^s_{p,q}$ are characterized in terms of doubly oversampled Haar coefficients (Haar frames). Secondly, in the case that $1/p<s<1$ and $f\in B^s_{p,q}$, we actually prove that the usual Haar coefficient norm, $\|\{2^j\langle f, h_{j,\mu}\rangle\}_{j,\mu}\|_{b^s_{p,q}}$ remains equivalent to $\|f\|_{B^s_{p,q}}$, i.e., the classical Besov space is a closed subset of its dyadic counterpart. At the endpoint case $s=1$ and $q=\infty$, we show that such an expression gives an equivalent norm for the Sobolev space $W^{1}_p(\mathbb{R})$, $1<p<\infty$, which is related to a classical result by Bo\v{c}karev. Finally, in several endpoint cases we clarify the relation between dyadic and standard Besov and Triebel-Lizorkin spaces.
翻译:注意: 英文专有名词要用英文标记。