Fake news detection aims to detect fake news widely spreading on social media platforms, which can negatively influence the public and the government. Many approaches have been developed to exploit relevant information from news images, text, or videos. However, these methods may suffer from the following limitations: (1) ignore the inherent emotional information of the news, which could be beneficial since it contains the subjective intentions of the authors; (2) pay little attention to the relation (similarity) between the title and textual information in news articles, which often use irrelevant title to attract reader' attention. To this end, we propose a novel Title-Text similarity and emotion-aware Fake news detection (TieFake) method by jointly modeling the multi-modal context information and the author sentiment in a unified framework. Specifically, we respectively employ BERT and ResNeSt to learn the representations for text and images, and utilize publisher emotion extractor to capture the author's subjective emotion in the news content. We also propose a scale-dot product attention mechanism to capture the similarity between title features and textual features. Experiments are conducted on two publicly available multi-modal datasets, and the results demonstrate that our proposed method can significantly improve the performance of fake news detection. Our code is available at https://github.com/UESTC-GQJ/TieFake.


翻译:假新闻检测旨在检测在社交媒体平台上广泛传播的假新闻,这可能对公众和政府产生负面影响。已经开发出了许多方法来利用新闻图像、文本或视频中的相关信息。然而,这些方法可能存在以下限制:(1)忽略了新闻中固有的情感信息,这可能是有益的,因为它包含了作者的主观意图;(2)对新闻文章中的标题和文本信息之间的关系(相似性)关注较少,这经常使用不相关的标题来吸引读者的注意。为此,我们提出了一种新的基于标题文本相似度和情感的Fake news检测 (TieFake)方法,通过在统一框架中联合建模多模态上下文信息和作者情感来解决这些限制。具体地,我们分别采用BERT和ResNeSt来学习文本和图像的表示,并利用发布者情感提取器捕捉新闻内容中的作者主观情感。我们还提出了一个刻度点乘注意机制来捕获标题特征和文本特征之间的相似性。我们在两个公开的多模态数据集上进行了实验,结果表明我们提出的方法可以显著提高假新闻检测的性能。我们的代码可以在https://github.com/UESTC-GQJ/TieFake中获得。

0
下载
关闭预览

相关内容

【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
上百份文字的检测与识别资源,包含数据集、code和paper
数据挖掘入门与实战
17+阅读 · 2017年12月7日
国家自然科学基金
4+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
49+阅读 · 2021年9月11日
Arxiv
13+阅读 · 2020年10月19日
Arxiv
18+阅读 · 2020年10月9日
Arxiv
20+阅读 · 2020年6月8日
VIP会员
相关VIP内容
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
上百份文字的检测与识别资源,包含数据集、code和paper
数据挖掘入门与实战
17+阅读 · 2017年12月7日
相关基金
国家自然科学基金
4+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员