We provide time lower bounds for sequential and parallel algorithms deciding bisimulation on labeled transition systems that use partition refinement. For sequential algorithms this is $\Omega((m \mkern1mu {+} \mkern1mu n ) \mkern-1mu \log \mkern-1mu n)$ and for parallel algorithms this is $\Omega(n)$, where $n$ is the number of states and $m$ is the number of transitions. The lowerbounds are obtained by analysing families of deterministic transition systems, ultimately with two actions in the sequential case, and one action for parallel algorithms. For deterministic transition systems with one action, bisimilarity can be decided sequentially with fundamentally different techniques than partition refinement. In particular, Paige, Tarjan, and Bonic give a linear algorithm for this specific situation. We show, exploiting the concept of an oracle, that this approach is not of help to develop a faster generic algorithm for deciding bisimilarity. For parallel algorithms there is a similar situation where these techniques may be applied, too.
翻译:我们提供了使用分区细化算法判定带标号转移系统的 Bisimulation 的顺序和并行算法的时间下界。对于顺序算法,该下界为 $\Omega((m \mkern1mu {+} \mkern1mu n ) \mkern-1mu \log \mkern-1mu n)$,对于并行算法,该下界为 $\Omega(n)$,其中 $n$ 是状态数,$m$ 是转移数。我们通过分析一组决策转移系统来获得下界,最终在顺序算法中有两个动作,在并行算法中有一个动作。对于只有一个动作的决策转移系统,可以使用基本不同于分区细化的技术顺序判定 Bisimulation。特别地,Paige、Tarjan 和 Bonic 给出了一个线性算法来处理这种特殊情况。利用“oracle”的概念,我们展示了这种方法在开发更快的通用 Bisimulation 判定算法时并不起作用。在并行算法中也存在类似的情况,这些技术也可以应用。