The Frank-Wolfe algorithm is a popular method in structurally constrained machine learning applications, due to its fast per-iteration complexity. However, one major limitation of the method is a slow rate of convergence that is difficult to accelerate due to erratic, zig-zagging step directions, even asymptotically close to the solution. We view this as an artifact of discretization; that is to say, the Frank-Wolfe \emph{flow}, which is its trajectory at asymptotically small step sizes, does not zig-zag, and reducing discretization error will go hand-in-hand in producing a more stabilized method, with better convergence properties. We propose two improvements: a multistep Frank-Wolfe method that directly applies optimized higher-order discretization schemes; and an LMO-averaging scheme with reduced discretization error, and whose local convergence rate over general convex sets accelerates from a rate of $O(1/k)$ to up to $O(1/k^{3/2})$.


翻译:Frank-Wolfe算法由于其快速的迭代复杂度,在结构约束的机器学习应用中很受欢迎。然而,该方法的一个主要局限性是收敛速度慢,由于在趋近于解的渐进情况下方向是不稳定的,甚至不能很好地加速。我们认为这是离散化的一个副作用。也就是说,Frank-Wolfe的\emph{流},即在渐进小步长处的轨迹,不会发生zig-zag,减少离散化误差将与产生更稳定、更具收敛性质的方法手法相辅相成。我们提出了两个改进:一个多步法和优化的高阶离散化方案直接应用于Frank-Wolfe方法中;和一个具有降低离散化误差的LMO-平均算法,其在普通凸集上的局部收敛速度从$O(1/k)$率加速到$O(1/k^{3/2})$。

0
下载
关闭预览

相关内容

南大《优化方法 (Optimization Methods》课程,推荐!
专知会员服务
80+阅读 · 2022年4月3日
专知会员服务
23+阅读 · 2021年4月10日
专知会员服务
17+阅读 · 2020年12月4日
深度强化学习策略梯度教程,53页ppt
专知会员服务
184+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月26日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员