Estimating the pose of animals can facilitate the understanding of animal motion which is fundamental in disciplines such as biomechanics, neuroscience, ethology, robotics and the entertainment industry. Human pose estimation models have achieved high performance due to the huge amount of training data available. Achieving the same results for animal pose estimation is challenging due to the lack of animal pose datasets. To address this problem we introduce SyDog: a synthetic dataset of dogs containing ground truth pose and bounding box coordinates which was generated using the game engine, Unity. We demonstrate that pose estimation models trained on SyDog achieve better performance than models trained purely on real data and significantly reduce the need for the labour intensive labelling of images. We release the SyDog dataset as a training and evaluation benchmark for research in animal motion.
翻译:估计动物的外形有助于理解动物运动,这是生物机械学、神经科学、神学、神学、机器人和娱乐业等学科中至关重要的动物运动。人类的外形估计模型由于现有大量培训数据而取得了很高的性能。动物的外形估计取得同样的结果,由于缺乏动物的外形数据集而具有挑战性。为了解决这个问题,我们引入了SyDog:一个包含地面真象的合成数据集,以及使用游戏引擎生成的捆绑盒坐标。我们证明,SyDog的模拟模型比纯粹关于真实数据的培训模型取得更好的性能,并大大减少了劳动密集型图像标签的需要。我们发布了SyDog数据集,作为动物运动研究的培训和评估基准。