For Ait-Sahalia-type interest rate model with Poisson jumps, we are interested in strong convergence of a novel time-stepping method, called transformed jump-adapted backward Euler method (TJABEM). Under certain hypothesis, the considered model takes values in positive domain $(0,\infty)$. It is shown that the TJABEM can preserve the domain of the underlying problem. Furthermore, for the above model with non-globally Lipschitz drift and diffusion coefficients, the strong convergence rate of order one of the TJABEM is recovered with respect to a $L^p$-error criterion. Finally, numerical experiments are given to illustrate the theoretical results.
翻译:对于Ait-Sahalia型利率模式和Poisson跳跃,我们有兴趣大力整合一种新型时间步法,称为变换的跳动适应后后退尤勒法(TJABEM),在某些假设下,考虑的模型以正域$(0)/infty)为单位,显示TJABEM可以保留根本问题的范围。此外,对于上述模式和非全球的利普西茨漂移和传播系数,TJABEM之一的顺序强烈趋同率在$L ⁇ p$-error标准方面得到恢复。最后,用数字实验来说明理论结果。