We study the problem of allocating many mobile robots for the execution of a pre-defined sweep schedule in a known two-dimensional environment, with applications toward search and rescue, coverage, surveillance, monitoring, pursuit-evasion, and so on. The mobile robots (or agents) are assumed to have one-dimensional sensing capability with probabilistic guarantees that deteriorate as the sensing distance increases. In solving such tasks, a time-parameterized distribution of robots along the sweep frontier must be computed, with the objective to minimize the number of robots used to achieve some desired coverage quality guarantee or to maximize the probabilistic guarantee for a given number of robots. We propose a max-flow based algorithm for solving the allocation task, which builds on a decomposition technique of the workspace as a generalization of the well-known boustrophedon decomposition. Our proposed algorithm has a very low polynomial running time and completes in under two seconds for polygonal environments with over $10^5$ vertices. Simulation experiments are carried out on three realistic use cases with randomly generated obstacles of varying shapes, sizes, and spatial distributions, which demonstrate the applicability and scalability our proposed method.
翻译:我们研究在已知的二维环境中分配许多移动机器人用于执行预先确定的扫荡时间表的问题,其应用范围包括搜索和救援、覆盖、监视、监测、追逐蒸发等。移动机器人(或代理人)假定具有一维的遥感能力,其概率保证随着感测距离的增加而恶化。在解决这些任务时,必须计算清扫边界沿线机器人的时间分数分布,目的是尽量减少用于实现某种预期的覆盖质量保障或最大限度地为特定数目的机器人提供概率保证的机器人的数量。我们建议用基于最大流的算法来解决分配任务,该算法建立在工作空间的分解技术之上,作为众所周知的bousrifton分解法的普遍化。我们提议的算法具有非常低的多位运行时间,在两秒钟内完成超过10美元5元的多面环境。模拟实验是在三个随机生成的形状、尺寸、大小、空间分布障碍的情况下进行的。我们提议的算出三个实际使用的案例,这些障碍的大小、空间和分布方式显示了我们提议的可变性。