In recent years, Convolutional Neural Networks (CNNs) have enabled ubiquitous image processing applications. As such, CNNs require fast runtime (forward propagation) to process high-resolution visual streams in real time. This is still a challenging task even with state-of-the-art graphics and tensor processing units. The bottleneck in computational efficiency primarily occurs in the convolutional layers. Performing operations in the Fourier domain is a promising way to accelerate forward propagation since it transforms convolutions into elementwise multiplications, which are considerably faster to compute for large kernels. Furthermore, such computation could be implemented using an optical 4f system with orders of magnitude faster operation. However, a major challenge in using this spectral approach, as well as in an optical implementation of CNNs, is the inclusion of a nonlinearity between each convolutional layer, without which CNN performance drops dramatically. Here, we propose a Spectral CNN Linear Counterpart (SCLC) network architecture and develop a Knowledge Distillation (KD) approach to circumvent the need for a nonlinearity and successfully train such networks. While the KD approach is known in machine learning as an effective process for network pruning, we adapt the approach to transfer the knowledge from a nonlinear network (teacher) to a linear counterpart (student). We show that the KD approach can achieve performance that easily surpasses the standard linear version of a CNN and could approach the performance of the nonlinear network. Our simulations show that the possibility of increasing the resolution of the input image allows our proposed 4f optical linear network to perform more efficiently than a nonlinear network with the same accuracy on two fundamental image processing tasks: (i) object classification and (ii) semantic segmentation.
翻译:近年来, Convolutional Neal 网络(CNNs) 使得无处不在的图像处理程序得以实现。 因此,CNN需要快速运行时间( 前方传播) 才能实时处理高清晰度的视觉流。 即使使用最先进的图形和高压处理器, 这也是一项具有挑战性的任务。 计算效率中的瓶颈主要发生在进化层中。 Fourier 域域的运行是加速前向传播的一个有希望的方法, 因为它会将连成元素化的倍增。 因此, CNN需要快速运行时间( 前方传播) 才能更快地计算大目标内核。 此外, 这种计算可以使用光学4f 系统实时处理高清晰度的视觉流流。 然而, 使用这种光谱化方法以及高压处理器处理器的光学实施过程中, 一个重大挑战是将每个进化层的非线性能包含在进化层中, 没有CNN的性能急剧下降。 在这里, 我们建议使用 Sepectrn CNN (SCLC) 网络(S) 快速化的计算法(SLC) 和网络的网络的快速化方法, 并开发知识平流化方法, 以绕过(KD), 来实现我们所了解的网络的不直线性处理的网络的网络的网络的网络的直径直径直线性化方法, 显示的网络的网络的运行性化, 显示的网络的网络的运行的运行的运行的运行性运行性能, 显示的网络的网络的运行性能性能性能。