In the present work we propose and study a time discrete scheme for the following chemotaxis-consumption model (for any $s\ge 1$), $$\partial_t u - \Delta u = - \nabla \cdot (u \nabla v), \quad \partial_t v - \Delta v = - u^s v \quad \hbox{in $(0,T)\times \Omega$,}$$ endowed with isolated boundary conditions and initial conditions, where $(u,v)$ model cell density and chemical signal concentration. The proposed scheme is defined via a reformulation of the model, using the auxiliary variable $z = \sqrt{v + \alpha^2}$ combined with a Backward Euler scheme for the $(u,z)$ problem and a upper truncation of $u$ in the nonlinear chemotaxis and consumption terms. Then, two different ways of retrieving an approximation for the function $v$ are provided. We prove the existence of solution to the time discrete scheme and establish uniform in time \emph{a priori} estimates, yielding to the convergence of the scheme towards a weak solution $(u,v)$ of the chemotaxis-consumption model.
翻译:在目前的工作中,我们提议并研究以下化工-消费模式(任何1美元)的时间分离方案(任何1美元),$\section_t u -\delta u= -\nabla\cdot (u\nabla v),\qud\part_t v -\Delta v=-uçes v\quad\hbox{x$(0,T)\time{美元)},美元具有孤立的边界条件和初始条件,其中美元(u,v)$模式细胞密度和化学信号浓度为美元。拟议方案是通过重新制定模型来定义的,使用辅助变量 $z=\sqrt{v +\alpha2}$,加上美元(u,z)问题的后向Euler计划,以及非线性化化学税和消费条件中美元上限为美元。 之后,两种不同的方式是重新确定统一化的趋同率方案。