With the FDA approval of Artificial Intelligence (AI) for point-of-care clinical diagnoses, model generalizability is of the utmost importance as clinical decision-making must be domain-agnostic. A method of tackling the problem is to increase the dataset to include images from a multitude of domains; while this technique is ideal, the security requirements of medical data is a major limitation. Additionally, researchers with developed tools benefit from the addition of open-sourced data, but are limited by the difference in domains. Herewith, we investigated the implementation of a Cycle-Consistent Generative Adversarial Networks (CycleGAN) for the domain adaptation of Optical Coherence Tomography (OCT) volumes. This study was done in collaboration with the Biomedical Optics Research Group and Functional & Anatomical Imaging & Shape Analysis Lab at Simon Fraser University. In this study, we investigated a learning-based approach of adapting the domain of a publicly available dataset, UK Biobank dataset (UKB). To evaluate the performance of domain adaptation, we utilized pre-existing retinal layer segmentation tools developed on a different set of RETOUCH OCT data. This study provides insight on state-of-the-art tools for domain adaptation compared to traditional processing techniques as well as a pipeline for adapting publicly available retinal data to the domains previously used by our collaborators.
翻译:由于林业发展局批准了用于护理点临床诊断的人工智能(AI),模型的通用性至关重要,因为临床决策必须具有领域性,解决该问题的方法是增加数据集,以包括来自多个领域的图像;虽然这一技术是理想的,但医疗数据的安全要求是一个重大限制;此外,拥有发达工具的研究人员从增加公开来源数据中受益,但受领域差异的限制。在这里,我们调查了实施一个循环-和谐生成反versarial网络(CycleGAN),以进行光学一致性成文(OCT)各卷的域适应。这项研究是同生物医学光学研究组和西蒙·弗雷泽大学功能和解剖成像分析实验室合作进行的。在这项研究中,我们研究了一种基于学习的方法,即调整公开提供的数据集的域域,联合王国生物银行数据集(UKB)。为了评价域适应的绩效,我们利用了先前存在的再现的网络结构分割工具,作为用于对以前已使用的传统数据库进行再适应的域域的一套数据工具。