Visual odometry is important for plenty of applications such as autonomous vehicles, and robot navigation. It is challenging to conduct visual odometry in textureless scenes or environments with sudden illumination changes where popular feature-based methods or direct methods cannot work well. To address this challenge, some edge-based methods have been proposed, but they usually struggle between the efficiency and accuracy. In this work, we propose a novel visual odometry approach called \textit{EdgeVO}, which is accurate, efficient, and robust. By efficiently selecting a small set of edges with certain strategies, we significantly improve the computational efficiency without sacrificing the accuracy. Compared to existing edge-based method, our method can significantly reduce the computational complexity while maintaining similar accuracy or even achieving better accuracy. This is attributed to that our method removes useless or noisy edges. Experimental results on the TUM datasets indicate that EdgeVO significantly outperforms other methods in terms of efficiency, accuracy and robustness.
翻译:视觉测量方法对于许多应用( 如自主飞行器和机器人导航) 很重要。 在无纹的场景或环境中进行视觉观察方法, 突然的照明变化, 而在流行的基于特征的方法或直接的方法无法很好地发挥作用的情况下, 进行视觉观察方法是具有挑战性的。 为了应对这一挑战, 提出了一些基于边缘的方法, 但它们通常在效率和准确性之间挣扎。 在这项工作中, 我们提议了一种叫作\ textit{ EdgeVO} 的新型视觉观察方法, 这种方法是准确的、 高效的和稳健的。 通过以某些策略高效地选择一小组边缘, 我们大大地提高了计算效率, 同时又不牺牲精确性。 与现有的基于边缘的方法相比, 我们的方法可以大大降低计算的复杂性, 同时保持类似的精确性, 甚至达到更高的准确性。 这是因为我们的方法可以消除无用或噪音的边缘。 TUM 数据集的实验结果显示, EdgeVO 在效率、 准确性和稳健健度方面大大优于其他方法。