This paper presents a method for learning Hamiltonian dynamics from a limited set of data points. The Hamiltonian vector field is found by regularized optimization over a reproducing kernel Hilbert space of vector fields that are inherently Hamiltonian, and where the vector field is required to be odd or even. This is done with a symplectic kernel, and it is shown how this symplectic kernel can be modified to be odd or even. The performance of the method is validated in simulations for two Hamiltonian systems. It is shown that the learned dynamics are Hamiltonian, and that the learned Hamiltonian vector field can be prescribed to be odd or even.
翻译:暂无翻译