Combinatorial optimization on near-term quantum devices is a promising path to demonstrating quantum advantage. However, the capabilities of these devices are constrained by high noise levels and limited error mitigation. In this paper, we propose an iterative Layer VQE (L-VQE) approach, inspired by the Variational Quantum Eigensolver (VQE). We present a large-scale numerical study, simulating circuits with up to 40 qubits and 352 parameters, that demonstrates the potential of the proposed approach. We evaluate quantum optimization heuristics on the problem of detecting multiple communities in networks, for which we introduce a novel qubit-frugal formulation. We numerically compare L-VQE with QAOA and demonstrate that QAOA achieves lower approximation ratios while requiring significantly deeper circuits. We show that L-VQE is more robust to sampling noise and has a higher chance of finding the solution as compared with standard VQE approaches. Our simulation results show that L-VQE performs well under realistic hardware noise.
翻译:短期量子装置的组合优化是展示量子优势的一条很有希望的道路。然而,这些装置的能力受到高噪音水平和有限减少误差的制约。在本文中,我们提议了一种迭代层VQE(L-VQE)方法,该方法受量子装置量子优化的启发,受量子量子装置量子优化(VQE)法的启发。我们进行了大规模的数字研究,模拟了高达40平方和352参数的电路,展示了拟议方法的潜力。我们评估了在网络中探测多个社区的问题的量子优化超强,为此我们采用了一种新的qubit-frugal配方。我们用数字将L-VQE与QAOA作比较,并表明QA达到较低的近似比率,同时需要更深得多的电路段。我们显示,L-VQE比标准VE方法更能找到解决办法。我们的模拟结果表明,L-VQE在现实的硬件噪音下运行良好。