In the field of motion planning the use of pre-computed, feasible, locally optimal motions called motion primitives can not only increase the quality of motions, but decrease the computation time required to develop these motions. In this work we extend the results of our earlier work by developing a technique for computing primitives for a lattice that admits higher-order states like curvature, velocity, and acceleration. The technique involves computing a minimal set of motion primitives that $t$-span a configuration space lattice. A set of motion primitives $t$-span a lattice if, given a real number $t$ greater or equal to one, any configuration in the lattice can be reached via a sequence of motion primitives whose cost is no more than $t$ times the cost of the optimal path to that configuration. While motion primitives computed in this way could be used with any graph search algorithm to develop a motion, this paper also proposes one such algorithm which works well in practice in both short complex maneuvers and longer maneuvers. Finally, this paper proposes a shortcut-based smoothing algorithm based on shortest path planning in directed acyclic graphs.
翻译:在运动规划领域,规划使用预先计算、可行、当地最佳的运动,称为运动原始体,不仅可以提高运动的质量,而且可以减少发展这些运动所需的计算时间。在这项工作中,我们通过开发一种技术来扩大我们早先的工作成果,即为允许较高顺序状态(如曲线、速度和加速度)的阵列而计算原始体的原始体的计算技术。这种技术涉及计算一套最起码的运动原始体,即以美元为平整的配置空间阵列。一套运动原始体($t$-span a lattice),如果考虑到实际数额大于或等于1美元,那么在阵列中的任何配置都可以通过运动原始体序列实现,其成本不超过该配置最佳路径的成本的1美元。虽然以这种方式计算的运动原始体可以使用任何图形搜索算法来开发运动,但本文还提出了一种这种算法,既在短期的复杂操作中,又在更长的操作中都很有效。最后,本文建议采用一种基于最短路径规划方向方向图的快捷式平滑动算法。