An informative measurement is the most efficient way to gain information about an unknown state. We give a first-principles derivation of a general-purpose dynamic programming algorithm that returns a sequence of informative measurements by sequentially maximizing the entropy of possible measurement outcomes. This algorithm can be used by an autonomous agent or robot to decide where best to measure next, planning a path corresponding to an optimal sequence of informative measurements. This algorithm is applicable to states and controls that are continuous or discrete, and agent dynamics that is either stochastic or deterministic; including Markov decision processes. Recent results from approximate dynamic programming and reinforcement learning, including on-line approximations such as rollout and Monte Carlo tree search, allow an agent or robot to solve the measurement task in real-time. The resulting near-optimal solutions include non-myopic paths and measurement sequences that can generally outperform, sometimes substantially, commonly-used greedy heuristics such as maximizing the entropy of each measurement outcome. This is demonstrated for a global search problem, where on-line planning with an extended local search is found to reduce the number of measurements in the search by half.
翻译:信息量度是获取关于未知状态信息的最有效方式。 我们给出了一种通用动态动态编程算法的第一个原则,该算法通过按顺序最大限度地增加可能的测量结果的灵敏度,返回一系列信息量测序。 这种算法可以由自主代理或机器人用来决定下一步的最佳测量方法,规划与信息量测最佳序列相对应的路径。 这种算法适用于连续或离散的状态和控制,以及连续或离散的物剂动态; 包括Markov决定程序。 近似动态编程和强化学习的最新结果, 包括推出和蒙特卡洛树搜索等在线近似值, 允许一个代理或机器人实时解决测量任务。 由此产生的近于最佳的解决方案包括非显性路径和测量序列, 这些路径和测量序列一般都可大大超过效果, 有时甚至大大超出通常使用的贪婪性超自然现象, 诸如将每种测量结果的酶原体最大化。 这表现为全球搜索问题, 与扩展的本地搜索进行在线规划, 从而减少了搜索中的半个搜索的测量数量。