Sparse regression codes (SPARCs) are a promising coding scheme that can approach the Shannon limit over Additive White Gaussian Noise (AWGN) channels. Previous works have proven the capacity-achieving property of SPARCs with Gaussian design matrices. We generalize these results to right orthogonally invariant ensembles that allow for more structured design matrices. With the Vector Approximate Message Passing (VAMP) decoder, we rigorously demonstrate the exponentially decaying error probability for design matrices that satisfy a certain criterion with the exponentially decaying power allocation. For other spectra, we design a new power allocation scheme to show that the information theoretical threshold is achievable.
翻译:粗缩回归代码( SPRCs) 是一个很有希望的编码方案, 它可以接近“ 香农限制” 而不是 Aditiveve White Gaussian 噪音( AWGN) 频道。 先前的工程已经用高斯设计矩阵证明了SPARCs的能力获得特性。 我们将这些结果概括为右侧的、 任意的、 任意的、 允许结构化设计矩阵。 随着矢量接近信件传递( VAMP) 解码器, 我们严格地证明了设计矩阵的急剧衰减错误概率, 从而满足了指数急剧衰减的能量分配的特定标准。 对于其他光谱, 我们设计了新的权力分配计划, 以显示信息理论阈值是可以实现的 。</s>