Recent research has revealed that Graph Neural Networks (GNNs) are susceptible to adversarial attacks targeting the graph structure. A malicious attacker can manipulate a limited number of edges, given the training labels, to impair the victim model's performance. Previous empirical studies indicate that gradient-based attackers tend to add edges rather than remove them. In this paper, we present a theoretical demonstration revealing that attackers tend to increase inter-class edges due to the message passing mechanism of GNNs, which explains some previous empirical observations. By connecting dissimilar nodes, attackers can more effectively corrupt node features, making such attacks more advantageous. However, we demonstrate that the inherent smoothness of GNN's message passing tends to blur node dissimilarity in the feature space, leading to the loss of crucial information during the forward process. To address this issue, we propose a novel surrogate model with multi-level propagation that preserves the node dissimilarity information. This model parallelizes the propagation of unaggregated raw features and multi-hop aggregated features, while introducing batch normalization to enhance the dissimilarity in node representations and counteract the smoothness resulting from topological aggregation. Our experiments show significant improvement with our approach.Furthermore, both theoretical and experimental evidence suggest that adding inter-class edges constitutes an easily observable attack pattern. We propose an innovative attack loss that balances attack effectiveness and imperceptibility, sacrificing some attack effectiveness to attain greater imperceptibility. We also provide experiments to validate the compromise performance achieved through this attack loss.


翻译:最近的研究发现,图神经网络(GNN)易受针对图结构的对抗攻击。攻击者只需在给定的训练标签下操作有限的边缘即可损害受害模型的性能。先前的实证研究表明,梯度攻击者倾向于增加边缘而不是删除它们。在本文中,我们提出了一个理论证明,揭示了由于GNN的消息传递机制,攻击者倾向于增加类间边缘,这解释了一些先前的实证观察结果。通过连接不同的节点,攻击者可以更有效地破坏节点特征,从而使这些攻击更具优势。然而,我们证明了GNN消息传递的内在平滑性倾向于在特征空间中模糊节点的不同之处,导致在前向过程中丢失关键信息。为解决这个问题,我们提出了一种新颖的替代模型,具有多级传播,以保留节点不同之处的信息。该模型并行传播未聚合的原始特征和多跳聚合特征,并引入批归一化来增强节点表示中的不同之处,并抵消拓扑聚合带来的平滑性。我们的实验证明了我们方法的显著改进。此外,理论和实验证据表明,添加类间边缘构成了一种容易被观察到的攻击模式。我们提出了一种创新的攻击损失,平衡攻击效果和不可察觉性,并牺牲一定的攻击效果以获得更大的不可察觉性。我们还提供了实验证明这种攻击损失的折衷性能。

0
下载
关闭预览

相关内容

Graph Transformer近期进展
专知会员服务
61+阅读 · 2023年1月5日
图神经网络黑盒攻击近期进展
专知会员服务
18+阅读 · 2022年10月14日
专知会员服务
56+阅读 · 2021年1月26日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
AAAI 2022 | 对抗攻击鲁棒的异质图神经网络
PaperWeekly
1+阅读 · 2022年8月16日
浅聊对比学习(Contrastive Learning)
极市平台
2+阅读 · 2022年7月26日
ICLR2019 图上的对抗攻击
图与推荐
17+阅读 · 2020年3月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月18日
Arxiv
0+阅读 · 2023年5月17日
Arxiv
19+阅读 · 2021年2月4日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关资讯
AAAI 2022 | 对抗攻击鲁棒的异质图神经网络
PaperWeekly
1+阅读 · 2022年8月16日
浅聊对比学习(Contrastive Learning)
极市平台
2+阅读 · 2022年7月26日
ICLR2019 图上的对抗攻击
图与推荐
17+阅读 · 2020年3月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员