Humans can effortlessly perform very complex, dexterous manipulation tasks by reacting to sensor observations. In contrast, robots can not perform reactive manipulation and they mostly operate in open-loop while interacting with their environment. Consequently, the current manipulation algorithms either are inefficient in performance or can only work in highly structured environments. In this paper, we present closed-loop control of a complex manipulation task where a robot uses a tool to interact with objects. Manipulation using a tool leads to complex kinematics and contact constraints that need to be satisfied for generating feasible manipulation trajectories. We first present an open-loop controller design using Non-Linear Programming (NLP) that satisfies these constraints. In order to design a closed-loop controller, we present a pose estimator of objects and tools using tactile sensors. Using our tactile estimator, we design a closed-loop controller based on Model Predictive Control (MPC). The proposed algorithm is verified using a 6 DoF manipulator on tasks using a variety of objects and tools. We verify that our closed-loop controller can successfully perform tool manipulation under several unexpected contacts. Video summarizing this work and hardware experiments are found https://youtu.be/VsClK04qDhk.
翻译:人类能够通过对传感器观察的反应轻松地执行非常复杂、巧妙的操作任务。相比之下,机器人在与其环境交互时通常不能进行反应式操作,而主要在开环中运行。因此,当前的操纵算法要么性能效率低,要么只能在高度结构化的环境中工作。本文提出了一种复杂操纵任务的闭环控制方法,其中机器人使用工具与物体进行交互操作。使用工具进行操作会导致复杂的运动学和接触约束,需要满足这些约束以生成可行的操纵轨迹。我们首先提出了一个使用非线性规划(NLP)满足这些约束的开环控制器设计。为了设计闭环控制器,我们提出了一种使用触觉传感器估计物体和工具位姿的系统。利用我们的触觉估计器,我们基于模型预测控制(MPC)设计了一个闭环控制器。通过使用各种物体和工具完成任务,验证了所提出的算法使用6自由度机械臂执行工具操作的能力。我们验证了我们的闭环控制器可以在多种意外接触情况下成功执行工具操作。点击此视频与硬件实验概述。