The ability of an agent to perform well in new and unseen environments is a crucial aspect of intelligence. In machine learning, this ability is referred to as strong or out-of-distribution generalization. However, simply considering differences in data distributions is not sufficient to fully capture differences in environments. In the present paper, we assay out-of-variable generalization, which refers to an agent's ability to handle new situations that involve variables never jointly observed before. We expect that such ability is important also for AI-driven scientific discovery: humans, too, explore 'Nature' by probing, observing and measuring subsets of variables at one time. Mathematically, it requires efficient re-use of past marginal knowledge, i.e., knowledge over subsets of variables. We study this problem, focusing on prediction tasks that involve observing overlapping, yet distinct, sets of causal parents. We show that the residual distribution of one environment encodes the partial derivative of the true generating function with respect to the unobserved causal parent. Hence, learning from the residual allows zero-shot prediction even when we never observe the outcome variable in the other environment.


翻译:跨变量泛化能力 在智能领域,智能体在新的、未知的环境中表现良好的能力是智能的一个重要方面。在机器学习中,这种能力被称为强泛化能力或分布外泛化能力。但是,仅仅考虑数据分布的差异是不足以完全捕捉到环境差异的。在本文中,我们探究跨变量泛化能力,它指的是智能体处理以前从未同时观察过的变量的新情况的能力。我们认为这种能力也对基于人工智能的科学发现至关重要:人类也通过探索、观察和测量一次观察一部分变量的方式来探索“自然”。从数学上讲,这需要对过去边际知识的有效重用,即对变量子集的知识。我们研究这个问题,重点关注涉及观察到重叠但不同的因果父项集合的预测任务。我们证明一个环境中的残差分布编码了真实生成函数对未观测的因果父项的偏导数。因此,学习残差可以实现零次预测,即使我们在另一个环境中从未观测到结果变量。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月31日
Arxiv
38+阅读 · 2021年8月31日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
15+阅读 · 2020年2月6日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
VIP会员
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员