The Eberlein method is a Jacobi-type process for solving the eigenvalue problem of an arbitrary matrix. In each iteration two transformations are applied on the underlying matrix, a plane rotation and a non-unitary elementary transformation. The paper studies the method under the broad class of generalized serial pivot strategies. We prove the global convergence of this method and present several numerical examples.
翻译:Eberlein方法是一个解决任意矩阵的精华值问题的雅各比型过程,在每次迭代中,对基本矩阵、平面旋转和非统一基本变换适用两种变换。本文研究了广义的普通序列轴战略下的方法。我们证明了这一方法的全球趋同,并列举了几个数字例子。