Scientists often use observational time series data to study complex natural processes, from climate change to civil conflict to brain activity. But regression analyses of these data often assume simplistic dynamics. Recent advances in deep learning have yielded startling improvements to the performance of models of complex processes, from speech comprehension to nuclear physics to competitive gaming. But deep learning is generally not used for scientific analysis. Here, we bridge this gap by showing that deep learning can be used, not just to imitate, but to analyze complex processes, providing flexible function approximation while preserving interpretability. Our approach -- the continuous-time deconvolutional regressive neural network (CDRNN) -- relaxes standard simplifying assumptions (e.g., linearity, stationarity, and homoscedasticity) that are implausible for many natural systems and may critically affect the interpretation of data. We evaluate CDRNNs on incremental human language processing, a domain with complex continuous dynamics. We demonstrate dramatic improvements to predictive likelihood in behavioral and neuroimaging data, and we show that CDRNNs enable flexible discovery of novel patterns in exploratory analyses, provide robust control of possible confounds in confirmatory analyses, and open up research questions that are otherwise hard to study using observational data.
翻译:科学家们经常使用观测时间序列数据来研究复杂的自然过程,从气候变化到内乱到大脑活动。但这些数据的回归分析往往采取简单化的动态。最近深层次学习的进展使从语言理解到核物理到竞技游戏等复杂过程模型的性能有了惊人的改进。但深层次学习通常不用于科学分析。在这里,我们通过显示可以利用深层次的学习,不仅可以模仿,而且可以分析复杂的过程,提供灵活的功能近似,同时保持可解释性。我们的方法 -- -- 不断的分流回流神经神经网络(CDRNN) -- -- 放松了对许多自然系统来说不易理解的简化假设标准(如线性、静态和同质性),可能严重影响数据解释。我们评估了人类语言渐进处理的CDRNNs,这是一个具有复杂连续动态的领域。我们展示了在预测行为和神经成形数据的可能性方面的巨大改进。我们显示,CDRNNS能够灵活地发现探索性分析的新模式,提供强有力的控制,在其他情况下进行硬性研究,在确认性研究中发现可能发现的难题。