A graph $G = (V,E)$ is a double-threshold graph if there exist a vertex-weight function $w \colon V \to \mathbb{R}$ and two real numbers $\mathtt{lb}, \mathtt{ub} \in \mathbb{R}$ such that $uv \in E$ if and only if $\mathtt{lb} \le \mathtt{w}(u) + \mathtt{w}(v) \le \mathtt{ub}$. In the literature, those graphs are studied also as the pairwise compatibility graphs that have stars as their underlying trees. We give a new characterization of double-threshold graphs that relates them to bipartite permutation graphs. Using the new characterization, we present a linear-time algorithm for recognizing double-threshold graphs. Prior to our work, the fastest known algorithm by Xiao and Nagamochi [Algorithmica 2020] ran in $O(n^{3} m)$ time, where $n$ and $m$ are the numbers of vertices and edges, respectively.
翻译:图形 $G = (V, E) 美元 如果存在顶点重量函数 $w\ colon V\ to \ mathbb{R} 美元和两个真实数字 $\ mathtt{lb},\ mathtt{ub}\ in\ mathbb{R}, 只有当 $\ matht{lb} (u) +\ matht{w} (v) +\ matht{w} (le)\ mathtt{u} (v)\le\ matht{ub} \ mathb} $ 和两个真实数字 $\ mathbet{R} 和两个真实数字 $\ matht{b} 和两个真实数字 $\ matht{rb}, 这些图表才会被研究成双轨相兼容性图。 我们对双轨图进行新的定性, 将它们和双轨图联系起来。 使用新的定性, 我们提出一个线时段算来识别双轨图。 在我们工作之前, 由 Xia 和 Nagamn riquen 数字 和 $ rimax 。