Machine learning algorithms have achieved superhuman performance in specific complex domains. Yet learning online from few examples and efficiently generalizing across domains remains elusive. In humans such learning proceeds via declarative memory formation and is closely associated with consciousness. Predictive processing has been advanced as a principled Bayesian inference framework for understanding the cortex as implementing deep generative perceptual models for both sensory data and action control. However, predictive processing offers little direct insight into fast compositional learning or the mystery of consciousness. Here we propose that through implementing online learning by hierarchical binding of unpredicted inferences, a predictive processing system may flexibly generalize in novel situations by forming working memories for perceptions and actions from single examples, which can become short- and long-term declarative memories retrievable by associative recall. We argue that the contents of such working memories are unified yet differentiated, can be maintained by selective attention and are consistent with observations of masking, postdictive perceptual integration, and other paradigm cases of consciousness research. We describe how the brain could have evolved to use perceptual value prediction for reinforcement learning of complex action policies simultaneously implementing multiple survival and reproduction strategies. 'Conscious experience' is how such a learning system perceptually represents its own functioning, suggesting an answer to the meta problem of consciousness. Our proposal naturally unifies feature binding, recurrent processing, and predictive processing with global workspace, and, to a lesser extent, the higher order theories of consciousness.


翻译:机器学习算法已经在特定复杂领域达到了超人水平的表现。然而,在在线从少量样本中进行学习,并有效地跨领域泛化,仍然是难以实现的。在人类中,这种学习通过声明性记忆形成,并与意识紧密相关。预测处理被提出作为一个贝叶斯推理的基础框架,用于理解皮质中实现对感知数据和行为控制的深度生成感知模型。然而,预测处理对灵活的组合学习或意识的神秘并没有直接的洞察。在这里,我们提出了这样一个观点:通过通过层次性绑定未预测的推理进行在线学习,预测处理系统可以通过从单个例子形成工作记忆(即可通过联想召回的短期和长期声明性记忆)来灵活地在新颖情况下进行泛化。我们认为,这种工作记忆的内容是统一但差异化的,可以通过选择性关注来维持,并且与意识研究的其他典型案例(例如屏蔽、后验感知整合等)一致。我们描述了大脑如何进化以使用感知价值预测对复杂行为策略进行强化学习,同时同时实现多种生存和繁殖策略。'意识体验'是这样一个学习系统如何感知其自身功能方式,从而提供了意识元问题的答案。我们的提议自然地将特征绑定、循环处理、预测处理与全局工作空间以及在较小程度上与意识的高阶理论统一起来。

0
下载
关闭预览

相关内容

JCIM丨DRlinker:深度强化学习优化片段连接设计
专知会员服务
6+阅读 · 2022年12月9日
专知会员服务
43+阅读 · 2021年5月19日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
22篇论文!增量学习/终生学习论文资源列表
专知
32+阅读 · 2018年12月27日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
JCIM丨DRlinker:深度强化学习优化片段连接设计
专知会员服务
6+阅读 · 2022年12月9日
专知会员服务
43+阅读 · 2021年5月19日
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
22篇论文!增量学习/终生学习论文资源列表
专知
32+阅读 · 2018年12月27日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员