Traditional computer vision approaches, based on neural networks (NN), are typically trained on a large amount of image data. By minimizing the cross-entropy loss between a prediction and a given class label, the NN and its visual embedding space are learned to fulfill a given task. However, due to the sole dependence on the image data distribution of the training domain, these models tend to fail when applied to a target domain that differs from their source domain. To learn a more robust NN to domain shifts, we propose the knowledge graph neural network (KG-NN), a neuro-symbolic approach that supervises the training using image-data-invariant auxiliary knowledge. The auxiliary knowledge is first encoded in a knowledge graph with respective concepts and their relationships, which is then transformed into a dense vector representation via an embedding method. Using a contrastive loss function, KG-NN learns to adapt its visual embedding space and thus its weights according to the image-data invariant knowledge graph embedding space. We evaluate KG-NN on visual transfer learning tasks for classification using the mini-ImageNet dataset and its derivatives, as well as road sign recognition datasets from Germany and China. The results show that a visual model trained with a knowledge graph as a trainer outperforms a model trained with cross-entropy in all experiments, in particular when the domain gap increases. Besides better performance and stronger robustness to domain shifts, these KG-NN adapts to multiple datasets and classes without suffering heavily from catastrophic forgetting.
翻译:基于神经网络(NN)的传统计算机视觉方法通常在大量图像数据上接受培训。通过最大限度地减少预测和特定类标签之间的交叉损耗,NN及其视觉嵌入空间可以学习完成特定任务。然而,由于仅依赖培训域的图像数据分布,这些模型在应用到与其源域不同的目标域时往往失败。为了学习更强大的NN到域变换,我们提议了知识图形神经网络(KG-NNN),这是一种神经同步方法,该方法利用图像-数据差异性多级辅助知识来监督培训。辅助知识首先被编码在包含相关概念和关系的知识图表中,然后通过嵌入方法转化为密度矢量代表。使用对比性损失功能,KG-NN学会调整其视觉嵌入空间,从而根据图像-数据差异数据嵌入空间的变异性调整其权重。我们评估了KG-NNN,这是利用图像性数据性能转换任务进行分类,使用的是图像性能转换网络(图像性能)多变异性多级的多级辅助知识。辅助知识首先被编码成一个带有相关概念及其关系,然后通过嵌入德国数据识别模型,然后将数据标记显示德国作为路识别数据,然后标记,将数据形式显示一个更好的数据识别数据,将数据,将数据转换成一个更好的数据,将数据,将数据转换成一个更好的模型,将数据形式显示为德国作为路标化数据,将数据,将数据形式,将数据形式,将数据转换成一个经过培训的模型,将数据转换成一个路面图式显示,将数据标记,将数据转换成一个路面图。