Today's scientific high performance computing (HPC) applications or advanced instruments are producing vast volumes of data across a wide range of domains, which introduces a serious burden on data transfer and storage. Error-bounded lossy compression has been developed and widely used in scientific community, because not only can it significantly reduce the data volumes but it can also strictly control the data distortion based on the use-specified error bound. Existing lossy compressors, however, cannot offer ultra-fast compression speed, which is highly demanded by quite a few applications or use-cases (such as in-memory compression and online instrument data compression). In this paper, we propose a novel ultra-fast error-bounded lossy compressor, which can obtain fairly high compression performance on both CPU and GPU, also with reasonably high compression ratios. The key contributions are three-fold: (1) We propose a novel, generic ultra-fast error-bounded lossy compression framework -- called UFZ, by confining our design to be composed of only super-lightweight operations such as bitwise and addition/subtraction operation, still keeping a certain high compression ratio. (2) We implement UFZ on both CPU and GPU and optimize the performance according to their architectures carefully. (3) We perform a comprehensive evaluation with 6 real-world production-level scientific datasets on both CPU and GPU. Experiments show that UFZ is 2~16X as fast as the second-fastest existing error-bounded lossy compressor (either SZ or ZFP) on CPU and GPU, with respect to both compression and decompression.


翻译:今天的科学高性能计算(HPC)应用或先进仪器正在产生大量广泛领域的数据,这给数据传输和存储带来沉重的负担。在本文中,我们提议了一个新的超快错误测错的损耗压缩压缩机,该压缩机可以在CPU和GPU获得相当高的压缩性能,而且压缩率也相当高。主要贡献是三重:(1) 我们提出了一个新颖的、通用的超快误测错的损耗压缩框架,称为UFZ,通过调整我们的设计,它只包含一些超轻的压缩速度操作,例如点压和在线仪器数据压缩。在本文中,我们提出一个新的超快错误测错压缩压缩压缩压缩压缩压缩压缩机,这可以在CPU和GPU之间获得相当高的压缩性能。(2) 我们用C-OUBS和C-SUBS的高级性能,在C-SUBS和S-S-S-SUBS-S-Slal-SUBS-S-SLA 和SUIA-S-S-Slal-C-Slal-C-SUral Stal-Seral-C-Seral Stal-Seral-Seral-Syal-Seral 和Slal-Seral-Slal-C-SUB-SUB-C-SB-SB-SB-SB-SB-SB-SB-S-SB-SD-SD-SB-SD-SDI) 和Slal-SD-SD-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-Slal-Slal-Slal-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Warped Dynamic Linear Models for Time Series of Counts
ResT V2: Simpler, Faster and Stronger
Arxiv
0+阅读 · 2022年4月15日
Arxiv
0+阅读 · 2022年4月14日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员