Even though artificial muscles have gained popularity due to their compliant, flexible, and compact properties, there currently does not exist an easy way of making informed decisions on the appropriate actuation strategy when designing a muscle-powered robot; thus limiting the transition of such technologies into broader applications. What's more, when a new muscle actuation technology is developed, it is difficult to compare it against existing robot muscles. To accelerate the development of artificial muscle applications, we propose a data driven approach for robot muscle actuator selection using Support Vector Machines (SVM). This first-of-its-kind method gives users gives users insight into which actuators fit their specific needs and actuation performance criteria, making it possible for researchers and engineer with little to no prior knowledge of artificial muscles to focus on application design. It also provides a platform to benchmark existing, new, or yet-to-be-discovered artificial muscle technologies. We test our method on unseen existing robot muscle designs to prove its usability on real-world applications. We provide an open-access, web-searchable interface for easy access to our models that will additionally allow for continuous contribution of new actuator data from groups around the world to enhance and expand these models.
翻译:尽管人工肌肉由于其兼容性、灵活性和紧凑性能而越来越受欢迎,但目前还没有一种容易的方法,在设计肌肉动力机器人时就适当的激活战略作出知情决定,从而限制此类技术向更广泛的应用的过渡。此外,在开发新的肌肉激活技术时,很难将其与现有的机器人肌肉技术进行比较。为了加速开发人工肌肉应用,我们提议采用数据驱动方法,利用支持矢量机(SVM)选择机器人肌肉驱动器。这种首选方法使用户能够深入了解哪些驱动器适合其具体需要和激活性能标准,从而使那些对人工肌肉知之甚少的研究人员和工程师有可能将注意力集中在应用设计上。它还提供了一个平台,用以衡量现有、新的或尚未发现的人工肌肉技术。我们测试了我们现有的未知机器人肌肉设计方法,以证明其在现实应用中的可用性。我们提供了一个开放、网络搜索界面,方便用户使用我们的模型,以便更容易地获取这些模型,从而使新的肌肉研究小组能够进一步扩大这些新的数据组,从而进一步扩大这些模型。