Even though artificial muscles have gained popularity due to their compliant, flexible, and compact properties, there currently does not exist an easy way of making informed decisions on the appropriate actuation strategy when designing a muscle-powered robot; thus limiting the transition of such technologies into broader applications. What's more, when a new muscle actuation technology is developed, it is difficult to compare it against existing robot muscles. To accelerate the development of artificial muscle applications, we propose a data driven approach for robot muscle actuator selection using Support Vector Machines (SVM). This first-of-its-kind method gives users gives users insight into which actuators fit their specific needs and actuation performance criteria, making it possible for researchers and engineer with little to no prior knowledge of artificial muscles to focus on application design. It also provides a platform to benchmark existing, new, or yet-to-be-discovered artificial muscle technologies. We test our method on unseen existing robot muscle designs to prove its usability on real-world applications. We provide an open-access, web-searchable interface for easy access to our models that will additionally allow for continuous contribution of new actuator data from groups around the world to enhance and expand these models.


翻译:尽管人工肌肉由于其兼容性、灵活性和紧凑性能而越来越受欢迎,但目前还没有一种容易的方法,在设计肌肉动力机器人时就适当的激活战略作出知情决定,从而限制此类技术向更广泛的应用的过渡。此外,在开发新的肌肉激活技术时,很难将其与现有的机器人肌肉技术进行比较。为了加速开发人工肌肉应用,我们提议采用数据驱动方法,利用支持矢量机(SVM)选择机器人肌肉驱动器。这种首选方法使用户能够深入了解哪些驱动器适合其具体需要和激活性能标准,从而使那些对人工肌肉知之甚少的研究人员和工程师有可能将注意力集中在应用设计上。它还提供了一个平台,用以衡量现有、新的或尚未发现的人工肌肉技术。我们测试了我们现有的未知机器人肌肉设计方法,以证明其在现实应用中的可用性。我们提供了一个开放、网络搜索界面,方便用户使用我们的模型,以便更容易地获取这些模型,从而使新的肌肉研究小组能够进一步扩大这些新的数据组,从而进一步扩大这些模型。

0
下载
关闭预览

相关内容

在机器学习中,支持向量机(SVM,也称为支持向量网络)是带有相关学习算法的监督学习模型,该算法分析用于分类和回归分析的数据。支持向量机(SVM)算法是一种流行的机器学习工具,可为分类和回归问题提供解决方案。给定一组训练示例,每个训练示例都标记为属于两个类别中的一个或另一个,则SVM训练算法会构建一个模型,该模型将新示例分配给一个类别或另一个类别,使其成为非概率二进制线性分类器(尽管方法存在诸如Platt缩放的问题,以便在概率分类设置中使用SVM)。SVM模型是将示例表示为空间中的点,并进行了映射,以使各个类别的示例被尽可能宽的明显间隙分开。然后,将新示例映射到相同的空间,并根据它们落入的间隙的侧面来预测属于一个类别。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
已删除
将门创投
6+阅读 · 2019年4月10日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年6月4日
Arxiv
8+阅读 · 2020年10月7日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
Techniques for Automated Machine Learning
Arxiv
4+阅读 · 2019年7月21日
Arxiv
4+阅读 · 2018年12月3日
Arxiv
8+阅读 · 2018年7月12日
VIP会员
相关资讯
已删除
将门创投
6+阅读 · 2019年4月10日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员