Robots assist in many areas that are considered unsafe for humans to operate. For instance, in handling pandemic diseases such as the recent Covid-19 outbreak and other outbreaks like Ebola, robots can assist in reaching areas dangerous for humans and do simple tasks such as pick up the correct medicine (among a set of bottles prescribed) and deliver to patients. In such cases, it might not be good to rely on the fully autonomous operation of robots. Since many mobile robots are fully functional with low-level tasks such as grabbing and moving, we consider the mixed-initiative control where the user can guide the robot remotely to finish such tasks. For this mixed-initiative control, the user controlling the robot needs to visualize a 3D scene as seen by the robot and guide it. Mixed reality can virtualize reality and immerse users in the 3D scene that is reconstructed from the real-world environment. This technique provides the user more freedom such as choosing viewpoints at view time. In recent years, benefiting from the high-quality data from Light Detection and Ranging (LIDAR) and RGBD cameras, mixed reality is widely used to build networked platforms to improve the performance of robot teleoperations and robot-human collaboration, and enhanced feedback for mixed-initiative control. In this paper, we proposed a novel haptic-enabled mixed reality system, that provides haptic interfaces to interact with the virtualized environments and give remote guidance for mobile robots towards high-level tasks. The experimental results show the effectiveness and flexibility of the proposed haptic enabled mixed reality system.
翻译:机器人在很多被认为对人体操作不安全的领域帮助。例如,在处理诸如最近的Covid-19爆发和埃博拉等其他疾病爆发等传染病时,机器人可以帮助到达对人类有危险的地区,并从事简单的任务,例如采集正确的药品(用一套瓶子处方)和向病人提供。在这种情况下,依赖机器人完全自主的操作可能不妥。由于许多移动机器人完全运行于诸如抓捕和移动等低层次的任务,因此我们认为用户可以远程引导机器人完成此类任务的混合倡议控制。由于这种混合的虚拟控制,控制机器人的用户需要将机器人所看到的3D场景视觉化并进行指导。混合的现实可以虚拟化现实化现实化和在从真实世界环境中重建的3D场景中的浸泡用户。由于许多移动机器人完全在捕捉和移动等低层次的任务中运作,因此用户可以更自由地选择观点。近年来,我们利用了来自光检测和调试运行的高质量数据(LIDAR)和RGBD摄像头的高级数据来完成此类任务。对于机器人来说,混合的现实化现实化的现实需要像头化的视觉化,用来构建一个混合的网络操作平台,用来改进我们的网络操作,以显示新的机器人操作,从而改进机操作。