Astrophysical time series often contain periodic signals. The large and growing volume of time series data from photometric surveys demands computationally efficient methods for detecting and characterizing such signals. The most efficient algorithms available for this purpose are those that exploit the $\mathcal{O}(N\log N)$ scaling of the Fast Fourier Transform (FFT). However, these methods are not optimal for non-sinusoidal signal shapes. Template fits (or periodic matched filters) optimize sensitivity for a priori known signal shapes but at a significant computational cost. Current implementations of template periodograms scale as $\mathcal{O}(N_f N_{obs})$, where $N_f$ is the number of trial frequencies and $N_{obs}$ is the number of lightcurve observations, and due to non-convexity, they do not guarantee the best fit at each trial frequency, which can lead to spurious results. In this work, we present a non-linear extension of the Lomb-Scargle periodogram to obtain a template-fitting algorithm that is both accurate (globally optimal solutions are obtained except in pathological cases) and computationally efficient (scaling as $\mathcal{O}(N_f\log N_f)$ for a given template). The non-linear optimization of the template fit at each frequency is recast as a polynomial zero-finding problem, where the coefficients of the polynomial can be computed efficiently with the non-equispaced fast Fourier transform. We show that our method, which uses truncated Fourier series to approximate templates, is an order of magnitude faster than existing algorithms for small problems ($N\lesssim 10$ observations) and 2 orders of magnitude faster for long base-line time series with $N_{obs} \gtrsim 10^4$ observations. An open-source implementation of the fast template periodogram is available at https://www.github.com/PrincetonUniversity/FastTemplatePeriodogram.


翻译:星体物理时间序列通常包含定期信号。 来自光度调查的大规模且不断增加的时间序列数据数量要求以计算效率高的方法检测和描述这些信号。为此目的,最有效的算法是使用快速Fleier变换(FFT) 的美元(N\log N) 美元缩放量。 但是,这些方法对于非非类流信号形状来说并不是最佳的。 模板适合( 或定期匹配过滤器) 优化预知的信号形状的灵敏度, 但计算成本相当高。 目前, 需要以 $\ mathcal{O} (N_ flim_ N ⁇ obs) 的方式执行模板周期表时, 以 $m=m=ocal=mocal=mocal=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx。 模板适合每个试验频率的最好匹配度, 这可以带来令人惊异的结果。 在这项工作中, 我们展示一个非线期间扩展 Lomb-Scarlegrale lader 时间的图像序列, 以获得一个模板- cal comal comal comal ad=x adal adal adal commoal commodeal ads romodeal roal max max max max max max max max max

0
下载
关闭预览

相关内容

FAST:Conference on File and Storage Technologies。 Explanation:文件和存储技术会议。 Publisher:USENIX。 SIT:http://dblp.uni-trier.de/db/conf/fast/
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
已删除
将门创投
6+阅读 · 2019年7月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年3月29日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
已删除
将门创投
6+阅读 · 2019年7月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员