New technologies and the availability of geospatial data have drawn attention to spatio-temporal biases present in society. For example: the COVID-19 pandemic highlighted disparities in the availability of broadband service and its role in the digital divide; the environmental justice movement in the United States has raised awareness to health implications for minority populations stemming from historical redlining practices; and studies have found varying quality and coverage in the collection and sharing of open-source geospatial data. Despite the extensive literature on machine learning (ML) fairness, few algorithmic strategies have been proposed to mitigate such biases. In this paper we highlight the unique challenges for quantifying and addressing spatio-temporal biases, through the lens of use cases presented in the scientific literature and media. We envision a roadmap of ML strategies that need to be developed or adapted to quantify and overcome these challenges -- including transfer learning, active learning, and reinforcement learning techniques. Further, we discuss the potential role of ML in providing guidance to policy makers on issues related to spatial fairness.
翻译:新技术和地理空间数据的可获性引起了社会对时空偏见的注意,例如:COVID-19大流行凸显了宽带服务提供方面的差距及其在数字鸿沟中的作用;美国的环境正义运动提高了对历史更新做法对少数群体人口健康影响的认识;研究发现,在收集和分享公开来源地理空间数据方面质量和覆盖面不一;尽管关于机器学习(ML)公平问题的大量文献,但很少提出减少这种偏见的算法战略;在本文件中,我们通过科学文献和媒体中的使用案例透镜,强调量化和解决时空偏见的独特挑战;我们设想制定或调整ML战略路线图,以量化和克服这些挑战 -- -- 包括转让学习、积极学习和加强学习技术。此外,我们讨论了ML在就空间公平问题向决策者提供指导方面的潜在作用。