In this paper, we propose a novel reconfigurable intelligent surface (RIS)-assisted wireless communication scheme which uses the concept of spatial modulation, namely RIS-assisted receive quadrature spatial modulation (RIS-RQSM). In the proposed RIS-RQSM system, the information bits are conveyed via both the indices of the two selected receive antennas and the conventional in-phase/quadrature (IQ) modulation. We propose a novel methodology to adjust the phase shifts of the RIS elements in order to maximize the signal-to-noise ratio (SNR) and at the same time to construct two separate PAM symbols at the selected receive antennas, as the in-phase and quadrature components of the desired IQ symbol. An energy-based greedy detector (GD) is implemented at the receiver to efficiently detect the received signal with minimal channel state information (CSI) via the use of an appropriately designed one-tap pre-equalizer. We also derive a closed-form upper bound on the average bit error probability (ABEP) of the proposed RIS-RQSM system. Then, we formulate an optimization problem to minimize the ABEP in order to improve the performance of the system, which allows the GD to act as a near-optimal receiver. Extensive numerical results are provided to demonstrate the error rate performance of the system and to compare with that of a prominent benchmark scheme. The results verify the remarkable superiority of the proposed RIS-RQSM system over the benchmark scheme.


翻译:在本文中,我们提出了一个新的可重新配置智能表面(RIS)辅助无线通信计划,使用空间调制概念,即RIS辅助接收等离子体空间调制(RIS-RQSM)系统。在拟议的RIS-RQSM系统中,信息比特通过所选两个接收天线的指数和传统级/级(IQ)调制来传递。我们提出了一个新颖的方法来调整RIS元素的阶段变换,以便最大限度地实现信号对音频比(SNR),同时在选定的接收天线上建立两个单独的PAM符号,作为理想的IQ符号的相位和二次调制式组成部分。在接收器中,一个基于能源的贪婪探测器(GD)通过使用设计得当的单级/级/级(IQ)调控器来高效检测收到的信号。我们还从一个封闭式的RIS-R基准系统的平均比差概率(ABES-RQSM)上设定了一个封闭式的上限,然后,我们将一个基于GMBIS-R的精确率系统的业绩调整到一个数字的系统。我们制定了一个最精确的系统,从而将一个最差的系统,从而将一个最差的系统进行优化的系统,从而将一个最差的系统向一个最差的系统向一个最差的系统。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员