Improving the visual quality of the given degraded observation by correcting exposure level is a fundamental task in the computer vision community. Existing works commonly lack adaptability towards unknown scenes because of the data-driven patterns (deep networks) and limited regularization (traditional optimization), and they usually need time-consuming inference. These two points heavily limit their practicability. In this paper, we establish a Practical Exposure Corrector (PEC) that assembles the characteristics of efficiency and performance. To be concrete, we rethink the exposure correction to provide a linear solution with exposure-sensitive compensation. Around generating the compensation, we introduce an exposure adversarial function as the key engine to fully extract valuable information from the observation. By applying the defined function, we construct a segmented shrinkage iterative scheme to generate the desired compensation. Its shrinkage nature supplies powerful support for algorithmic stability and robustness. Extensive experimental evaluations fully reveal the superiority of our proposed PEC. The code is available at https://rsliu.tech/PEC.
翻译:通过纠正接触水平来改善已退化观测的视觉质量是计算机视觉界的一项基本任务。现有的工作由于数据驱动模式(深网络)和有限的正规化(传统优化),通常缺乏适应未知场景的能力,通常需要花费时间的推理。这两个点极大地限制了其实用性。在本文件中,我们建立了一个实际暴露纠正器(PEC),它汇集了效率和性能的特征。具体地说,我们重新思考接触纠正器,以提供对暴露敏感的赔偿的线性解决方案。在提供赔偿时,我们引入了暴露对抗功能,作为从观察中充分提取宝贵信息的关键引擎。我们通过应用这一定义的功能,我们建立了一个分离式的缩缩缩缩迭机制,以产生预期的补偿。它的缩缩性质为算稳定性和稳健提供了强有力的支持。广泛的实验评估充分揭示了我们提议的PEC的优势。该代码可在https://rsliu.tech/PEC中查阅。