The music domain is among the most important ones for adopting recommender systems technology. In contrast to most other recommendation domains, which predominantly rely on collaborative filtering (CF) techniques, music recommenders have traditionally embraced content-based (CB) approaches. In the past years, music recommendation models that leverage collaborative and content data -- which we refer to as content-driven models -- have been replacing pure CF or CB models. In this survey, we review 55 articles on content-driven music recommendation. Based on a thorough literature analysis, we first propose an onion model comprising five layers, each of which corresponds to a category of music content we identified: signal, embedded metadata, expert-generated content, user-generated content, and derivative content. We provide a detailed characterization of each category along several dimensions. Second, we identify six overarching challenges, according to which we organize our main discussion: increasing recommendation diversity and novelty, providing transparency and explanations, accomplishing context-awareness, recommending sequences of music, improving scalability and efficiency, and alleviating cold start. Each article addresses one or more of these challenges is categorized according to the content layers of our onion model, the article's goal(s), and main methodological choices. Furthermore, articles are discussed in temporal order to shed light on the evolution of content-driven music recommendation strategies. Finally, we provide our personal selection of the persisting grand challenges which are still waiting to be solved in future research endeavors.
翻译:音乐领域是采用建议系统技术的最重要领域之一。与大多数主要依赖合作过滤技术的其他建议领域不同,音乐建议者传统上都采用基于内容(CB)的方法。在过去几年中,利用合作和内容数据的音乐建议模式 -- -- 我们称之为内容驱动模式 -- -- 一直在取代纯CF或CB模式。在本次调查中,我们审查了55个关于内容驱动音乐建议的文章。根据透彻的文献分析,我们首先提议了一个由五层组成的洋流模式,其中每一层与我们确定的一个音乐内容类别相对应:信号、嵌入元数据、专家生成的内容、用户生成的内容和衍生的内容。我们从几个方面详细描述每一类合作和内容的数据。第二,我们确定了六大挑战,据此我们组织我们的主要讨论:增加建议的多样性和新颖性,实现背景意识,建议音乐序列,改进可缩放性和效率,以及减轻寒冷的开端。每篇文章都根据我们所查明的音乐内容内容分类为一类或更多的内容:信号、嵌嵌入元数据、由用户生成的内容以及衍生的内容和衍生成品内容的特性。我们最后是个人选择的顺序。