Mass public quarantining, colloquially known as a lock-down, is a non-pharmaceutical intervention to check spread of disease and pandemics such as the ongoing COVID-19 pandemic. We present ESOP, a novel application of active machine learning techniques using Bayesian optimization, that interacts with an epidemiological model to arrive at lock-down schedules that optimally balance public health benefits and socio-economic downsides of reduced economic activity during lock-down periods. The utility of ESOP is demonstrated using case studies with VIPER, a stochastic agent-based simulator that we also propose. However, ESOP can flexibly interact with arbitrary epidemiological simulators and produce schedules that involve multiple phases of lock-downs.


翻译:大规模公共检疫,俗称 " 封闭 ",是一种非药物性干预,以遏制疾病和流行病的蔓延,如正在发生的COVID-19大流行,我们介绍了ESOP,这是运用巴伊西亚优化进行积极机器学习技术的一种新应用,它与一种流行病学模型相互作用,以达成封闭式时间表,最佳地平衡公共卫生利益和在封闭期间经济活动减少的社会经济下行。 ESOP的效用是通过与VIPER的案例研究加以证明的,VIPER是一个基于随机剂的模拟器,我们也提议这样做。然而,ESOP可以与任意的流行病学模拟器进行灵活互动,并产生包含多个阶段的封闭式时间表。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2018年10月18日
Arxiv
3+阅读 · 2018年10月5日
Learning Blind Video Temporal Consistency
Arxiv
3+阅读 · 2018年8月1日
Arxiv
8+阅读 · 2018年7月12日
Arxiv
5+阅读 · 2018年4月22日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
3+阅读 · 2018年10月18日
Arxiv
3+阅读 · 2018年10月5日
Learning Blind Video Temporal Consistency
Arxiv
3+阅读 · 2018年8月1日
Arxiv
8+阅读 · 2018年7月12日
Arxiv
5+阅读 · 2018年4月22日
Arxiv
5+阅读 · 2017年12月14日
Top
微信扫码咨询专知VIP会员