This paper studies a semiparametric quantile regression model with endogenous variables and random right censoring. The endogeneity issue is solved using instrumental variables. It is assumed that the structural quantile of the logarithm of the outcome variable is linear in the covariates and censoring is independent. The regressors and instruments can be either continuous or discrete. The specification generates a continuum of equations of which the quantile regression coefficients are a solution. Identification is obtained when this system of equations has a unique solution. Our estimation procedure solves an empirical analogue of the system of equations. We derive conditions under which the estimator is asymptotically normal and prove the validity of a bootstrap procedure for inference. The finite sample performance of the approach is evaluated through numerical simulations. The method is illustrated by an application to the national Job Training Partnership Act study.
翻译:本文研究的是带有内生变量和随机右审查的半参数量化回归模型。 内生变量问题用工具变量解决。 假设结果变量的对数结构量化是线性的, 共变和审查是独立的。 递减器和仪器可以是连续的, 也可以是离散的。 规格产生一系列方程式, 其四分位回归系数是一个解决方案。 当这个方程式系统有一个独特的解决方案时, 才能识别该方程式。 我们的估算程序解决了对等系统的经验性类比。 我们得出了估计器是非抽象正常的, 并证明测算器程序的有效性。 方法的有限样本性表现通过数字模拟来评估。 该方法通过对国家就业培训法案研究的应用来说明。