Prompt tuning (PT) is an effective approach to adapting pre-trained language models to downstream tasks. Without a good initialization, prompt tuning doesn't perform well under few-shot settings. So pre-trained prompt tuning (PPT) is proposed to initialize prompts by leveraging pre-training data. We propose MetaPT (Meta-learned Prompt Tuning) to further improve PPT's initialization by considering latent structure within the pre-training data. Specifically, we introduce the structure by first clustering pre-training data into different auxiliary tasks with unsupervised methods. Then we use these tasks to pre-train prompts with a meta-learning algorithm. Such a process can make prompts learn a better initialization by discovering commonalities among these auxiliary tasks. We evaluate our method on seven downstream tasks. Our MetaPT achieves better and more stable performance than the state-of-the-art method.
翻译:快速调试( PT) 是一种有效的方法, 使培训前语言模式适应下游任务。 没有良好的初始化, 快速调试不会在少数情况下运行良好。 因此, 预培训前的快速调试( PPT) 可以通过利用培训前的数据启动快速调试( PPT) 启动快速调试。 我们建议 Meta- 学习快速调试( Meta- 学习快速调试) 通过在培训前数据中考虑潜在结构来进一步改进 PPPT的初始化。 具体地说, 我们首先将培训前数据集中到不同辅助任务中, 并采用不受监督的方法。 然后我们用这些任务来使用元学习算法进行预培训快速调试。 这样的过程可以通过发现这些辅助任务之间的共性来让速化学习更好的初始化。 我们在七项下游任务上评估我们的方法。 我们的 MetPT比最先进的方法取得更好和更稳定的业绩 。