As a valid metric of metric-measure spaces, Gromov-Wasserstein (GW) distance has shown the potential for the matching problems of structured data like point clouds and graphs. However, its application in practice is limited due to its high computational complexity. To overcome this challenge, we propose a novel importance sparsification method, called Spar-GW, to approximate GW distance efficiently. In particular, instead of considering a dense coupling matrix, our method leverages a simple but effective sampling strategy to construct a sparse coupling matrix and update it with few computations. We demonstrate that the proposed Spar-GW method is applicable to the GW distance with arbitrary ground cost, and it reduces the complexity from $\mathcal{O}(n^4)$ to $\mathcal{O}(n^{2+\delta})$ for an arbitrary small $\delta>0$. In addition, this method can be extended to approximate the variants of GW distance, including the entropic GW distance, the fused GW distance, and the unbalanced GW distance. Experiments show the superiority of our Spar-GW to state-of-the-art methods in both synthetic and real-world tasks.
翻译:Gromov-Wasserstein(GW)距离作为计量空间的一个有效衡量标准,显示了像点云和图形这样的结构化数据存在匹配问题的可能性,然而,由于计算复杂程度高,该距离的实际应用有限。为了克服这一挑战,我们建议了一种新型重要的聚变法,称为Spar-GW, 以有效接近GW距离。特别是,我们的方法没有考虑密集的混合矩阵,而是利用简单而有效的取样战略来构建一个稀疏的混合矩阵,并以很少的计算来更新它。我们证明,拟议的Spar-GW方法适用于GW距离,其任意的地面成本也有限,而且它降低了其复杂性,从$\mathcal{O}(n ⁇ 4)美元到$\mathcal{O}(n ⁇ 2 ⁇ delta})美元,用于任意的小型小距离。此外,这一方法可以扩展为大约GW距离变量,包括进化GW距离、接合GW距离和不均匀的GW距离。实验显示了我们合成世界和Spar-W实际方法的优越性。