Network Morphism based Neural Architecture Search (NAS) is one of the most efficient methods, however, knowing where and when to add new neurons or remove dis-functional ones is generally left to black-box Reinforcement Learning models. In this paper, we present a new Network Morphism based NAS called Noisy Heuristics NAS which uses heuristics learned from manually developing neural network models and inspired by biological neuronal dynamics. Firstly, we add new neurons randomly and prune away some to select only the best fitting neurons. Secondly, we control the number of layers in the network using the relationship of hidden units to the number of input-output connections. Our method can increase or decrease the capacity or non-linearity of models online which is specified with a few meta-parameters by the user. Our method generalizes both on toy datasets and on real-world data sets such as MNIST, CIFAR-10, and CIFAR-100. The performance is comparable to the hand-engineered architecture ResNet-18 with the similar parameters.


翻译:以网络为基础的基于神经结构搜索(NAS)是最有效的方法之一,然而,我们知道在何时何地添加新的神经元或去除功能不全的神经元通常留给黑盒强化学习模型。我们在本文件中介绍了一个新的基于网络的光谱模型NAS,称为新神经元神经元NAS,它使用人工开发神经网络模型和生物神经动态的启发所学的超常力学。首先,我们随机添加新的神经元,将某些神经元除去,只选择最合适的神经元。第二,我们利用隐藏单元与输入输出连接数之间的关系来控制网络中的层数。我们的方法可以增加或降低由用户用几个元参数指定的在线模型的能力或非线性。我们的方法在玩具数据集和诸如MNISIC、CIFAR-10和CIFAR-100等真实世界数据集上都作了概括。其性能与手动结构ResNet-18相似的参数相似。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
12+阅读 · 2018年9月5日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员