The quest for the efficient adaptation of multilegged robotic systems to changing conditions is expected to render new insights into robotic control and locomotion. In this paper, we study the performance frontiers of the enumerative (factorial) encoding of hexapod gaits for fast recovery to conditions of leg failures. Our computational studies using five nature-inspired gradient-free optimization heuristics have shown that it is possible to render feasible recovery gait strategies that achieve minimal deviation to desired locomotion directives with a few evaluations (trials). For instance, it is possible to generate viable recovery gait strategies reaching 2.5 cm. (10 cm.) deviation on average with respect to a commanded direction with 40 - 60 (20) evaluations/trials. Our results are the potential to enable efficient adaptation to new conditions and to explore further the canonical representations for adaptation in robotic locomotion problems.
翻译:对多脚机器人系统进行有效改造以适应不断变化的条件的探索,可望使人们对机器人控制和运动状态产生新的洞察力。在本文件中,我们研究了用于快速恢复到腿衰竭状态的六边形弹道数字(进阶)编码的性能前沿。我们利用五个自然驱动的梯度-无梯度优化超常理论进行的计算研究表明,有可能制定可行的恢复动作战略,在少数评价(审判)下尽可能减少偏离所需移动指令的情况。例如,有可能产生可行的恢复步态战略,平均达到2.5厘米(10厘米),在40-60(20)次评价/试验的指挥方向上偏离。我们的结果有可能使适应新条件的高效适应,并进一步探索机器人移动问题的适应能力。