Noisy labels are inevitable yet problematic in machine learning society. It ruins the generalization of a classifier by making the classifier over-fitted to noisy labels. Existing methods on noisy label have focused on modifying the classifier during the training procedure. It has two potential problems. First, these methods are not applicable to a pre-trained classifier without further access to training. Second, it is not easy to train a classifier and regularize all negative effects from noisy labels, simultaneously. We suggest a new branch of method, Noisy Prediction Calibration (NPC) in learning with noisy labels. Through the introduction and estimation of a new type of transition matrix via generative model, NPC corrects the noisy prediction from the pre-trained classifier to the true label as a post-processing scheme. We prove that NPC theoretically aligns with the transition matrix based methods. Yet, NPC empirically provides more accurate pathway to estimate true label, even without involvement in classifier learning. Also, NPC is applicable to any classifier trained with noisy label methods, if training instances and its predictions are available. Our method, NPC, boosts the classification performances of all baseline models on both synthetic and real-world datasets. The implemented code is available at https://github.com/BaeHeeSun/NPC.


翻译:噪音标签在机器学习中是不可避免的,但在机器学习社会中是不可避免的,但有问题。它破坏了分类器的普遍化,使分类器过于适合吵闹的标签。关于噪音标签的现有方法侧重于在培训过程中修改分类器。它有两个潜在的问题。首先,这些方法不适用于没有进一步接受培训的经过培训的分类器。第二,训练一个分类器并规范来自噪音标签的所有负面影响并同时同时同时进行。我们建议一个新的方法分支,即噪音预测校准(NPC)在学习噪音标签时采用新的分类器。通过采用基因模型引入和估计新型过渡矩阵,NPC将预先训练的分类器的噪音预测纠正为后处理办法的真正标签。我们证明NPC理论上与基于过渡矩阵的方法一致。然而,NPC的经验为估计真实标签提供了更准确的路径,即使没有参与分类器学习。此外,NPC也适用于任何经过噪音标签方法培训的分类器,如果有培训实例及其预测,则适用于任何经过噪音标签法训练的分类器。我们的方法、NPC将预先训练的分类器/NPC校准了作为后处理方法的真正编码。我们的方法、GASW的所有合成模型和ABW/MS/MS。

0
下载
关闭预览

相关内容

NPC:IFIP International Conference on Network and Parallel Computing。 Explanation:网络与并行计算国际会议。 Publisher:Springer。 SIT: http://dblp.uni-trier.de/db/conf/npc/
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
12+阅读 · 2022年4月12日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员