With the advent of cloud computing, different cloud providers with heterogeneous cloud services (compute, storage, network, applications, etc.) and their related Application Programming Interfaces (APIs) have emerged. This heterogeneity complicates the implementation of an interoperable cloud system. Several standards have been proposed to address this challenge and provide a unified interface to cloud resources. The Open Cloud Computing Interface (OCCI) thereby focuses on the standardization of a common API for Infrastructure-as-a-Service (IaaS) providers while the Topology and Orchestration Specification for Cloud Applications (TOSCA) focuses on the standardization of a template language to enable the proper definition of the topology of cloud applications and their orchestrations on top of a cloud system. TOSCA thereby does not define how the application topologies are created on the cloud. Therefore, we analyse the conceptual similarities between the two approaches and we study how we can integrate them to obtain a complete standard-based approach to manage both cloud infrastructure and cloud application layers. We propose an automated extensive mapping between the concepts of the two standards and we provide TOSCA Studio, a model-driven tool chain for TOSCA that conforms to OCCI. TOSCA Studio allows to graphically design cloud applications as well as to deploy and manage them at runtime using a fully model-driven cloud orchestrator based on the two standards. Our contribution is validated by successfully designing and deploying two cloud applications: WordPress and Node Cellar.


翻译:随着云计算的到来,不同云源供应商(计算、存储、网络、应用等)及其相关的应用程序设计界面(API)出现了不同的云提供方,这种差异性使互操作云系统的实施复杂化。提出了几项标准,以应对这一挑战,并为云资源提供一个统一的界面。因此,开放云计算界面(OCCI)侧重于基础设施服务通用API(IaaS)供应商的标准化,而云应用的地形学和管弦化规格(TOSCA)则侧重于模板语言的标准化,以便能够在云系统顶部正确定义云应用的表层学及其管弦化。因此,SCA无法确定如何在云中创建应用程序。因此,我们分析了两种方法之间的概念相似性,并研究了如何将它们整合到一个完整的标准基点上管理云基础设施和云层应用层。我们提出了两种标准概念之间的自动广泛绘图,我们为云层设计了云层应用的模板,一个模型驱动的云层应用链用于在云层系统的顶端系统设计,一个模型驱动的云层设计,一个模型驱动的云层应用系统,使SAR应用能够充分管理两个标准。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
专知会员服务
60+阅读 · 2020年3月19日
专知会员服务
109+阅读 · 2020年3月12日
【新书】Java企业微服务,Enterprise Java Microservices,272页pdf
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
35+阅读 · 2019年11月7日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Semantics of Data Mining Services in Cloud Computing
Arxiv
4+阅读 · 2018年10月5日
Arxiv
7+阅读 · 2018年1月30日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员