Privacy preservation is a crucial component of any real-world application. But, in applications relying on machine learning backends, privacy is challenging because models often capture more than what the model was initially trained for, resulting in the potential leakage of sensitive information. In this paper, we propose an automatic and quantifiable metric that allows us to evaluate humans' perception of a model's ability to preserve privacy with respect to sensitive variables. In this paper, we focus on saliency-based explanations, explanations that highlight regions of the input text, to infer internal workings of a black box model. We use the degree with which differences in interpretation of general vs privacy preserving models correlate with sociolinguistic biases to inform metric design. We show how certain commonly-used methods that seek to preserve privacy do not align with human perception of privacy preservation leading to distrust about model's claims. We demonstrate the versatility of our proposed metric by validating its utility for measuring cross corpus generalization for both privacy and emotion. Finally, we conduct crowdsourcing experiments to evaluate the inclination of the evaluators to choose a particular model for a given purpose when model explanations are provided, and show a positive relationship with the proposed metric. To the best of our knowledge, we take the first step in proposing automatic and quantifiable metrics that best align with human perception of model's ability for privacy preservation, allowing for cost-effective model development.
翻译:隐私保护是任何现实世界应用的关键组成部分。 但是,在依赖机器学习后端的应用中,隐私是具有挑战性的,因为模型往往捕捉到的比模型最初所训练的模式更多,导致敏感信息可能泄漏。在本文中,我们提议了一个自动和量化的衡量标准,使我们能够评价人类对模型保护隐私的能力的认识,而该模型对敏感变量保护隐私的能力的看法。在本文件中,我们侧重于突出基于证据的解释,该解释突出输入文本的区域,推断黑盒模型的内部运作。我们利用模型解释与社会语言偏见相关的隐私保护模型的差别程度来为衡量标准设计提供信息。我们展示了寻求维护隐私的某些通常使用的方法与人类对隐私保护的认识不相符,从而导致对模型主张不信任。我们通过验证其用于衡量隐私和情感的交叉概括的实用性来证明我们拟议指标的多变性。最后,我们进行众包实验,以评价评价评价评估评价员在提供模型解释时选择特定模式的模型与社会语言偏见相关差异的程度。我们展示了某些寻求维护隐私的常用方法如何与人类对隐私的看法相一致,我们提出了最佳的衡量标准。我们的最佳衡量标准。