We present a novel method to estimate the dominant eigenvalue and eigenvector pair of any non-negative real matrix via graph infection. The key idea in our technique lies in approximating the solution to the first-order matrix ordinary differential equation (ODE) with the Euler method. Graphs, which can be weighted, directed, and with loops, are first converted to its adjacency matrix A. Then by a naive infection model for graphs, we establish the corresponding first-order matrix ODE, through which A's dominant eigenvalue is revealed by the fastest growing term. When there are multiple dominant eigenvalues of the same magnitude, the classical power iteration method can fail. In contrast, our method can converge to the dominant eigenvalue even when same-magnitude counterparts exist, be it complex or opposite in sign. We conduct several experiments comparing the convergence between our method and power iteration. Our results show clear advantages over power iteration for tree graphs, bipartite graphs, directed graphs with periods, and Markov chains with spider-traps. To our knowledge, this is the first work that estimates dominant eigenvalue and eigenvector pair from the perspective of a dynamical system and matrix ODE. We believe our method can be adopted as an alternative to power iteration, especially for graphs.
翻译:我们提出了一个新颖的方法来通过图形感染来估计任何非负值真实矩阵中的占支配地位的成份和成份。 我们技术中的关键思想在于与Euler 方法相近于一阶矩阵普通差异方程(ODE)的解决方案。 图表可以加权、 定向和环形, 最初可以转换为它的相邻矩阵A。 然后, 通过一个天真的图表感染模型, 我们建立了相应的第一阶矩阵模型ODE, 通过这个模型, A的占支配地位的成份可以通过增长最快的术语来显示。 当具有相同规模的多重占支配地位的成份值时, 经典的权力迭代法可能会失败。 相比之下, 我们的方法即使具有相同的放大度对应方, 也可以与占支配地位的成份值相交汇。 我们用一些实验来比较我们的方法和能量的相近。 我们的结果表明, 相对于树形图、 双叶图、 用不同时期的图状图解, 以及带有蜘蛛- 色系的离子链, 特别的变异法是我们的知识, 我们的动力矩阵, 我们的模型可以相信我们的知识, 我们的动力和变式矩阵的模型。</s>