Are large language models (LLMs) like GPT-3 psychologically safe? In this work, we design unbiased prompts to evaluate LLMs systematically from a psychological perspective. Firstly, we test the personality traits of three different LLMs with Short Dark Triad (SD-3) and Big Five Inventory (BFI). We find all of them show higher scores on SD-3 than the human average, indicating a relatively darker personality. Furthermore, LLMs like InstructGPT and FLAN-T5, which are fine-tuned with safety metrics, do not necessarily have more positive personalities. They score higher on Machiavellianism and Narcissism than GPT-3. Secondly, we test the LLMs in GPT-3 series on well-being tests to study the impact of fine-tuning with more training data. Interestingly, we observe a continuous increase in well-being scores from GPT-3 to InstructGPT. Following the observations, we show that instruction-finetune FLAN-T5 with positive answers in BFI can effectively improve the model from a psychological perspective. Finally, we call on the community to evaluate and improve LLMs' safety systematically instead of at the sentence level only.


翻译:大型语言模型(LLMs)像GPT-3这样的大语言模型(LLMs)是否具有心理安全性?在这项工作中,我们设计了不带偏见的提示,以便从心理角度对LLMs进行系统评估。首先,我们用短黑三合(SD-3)和五大目录(BFI)来测试三个不同的LMs的个性特征。我们发现,所有这些LLMs在SD-3上的得分都高于人的平均分,这显示了相对黑暗的个性。此外,像SportGPT和FLAN-T5这样的有安全度的微调的LLMs,不一定比GPT-3的得分高。在Mchiavelliism和Narcisisism方面得分更高。第二,我们用更多的培训数据来测试GPT-3系列中的三个LMs,以研究微调的影响。有趣的是,我们观察到从GPT-3到GPTT的幸福得分持续增加。我们发现,在观察后显示,在BFI有积极答案的教学-fineneunefune FLLAN-T5能够从心理角度有效地改进模型。最后我们呼吁社区对LLMs的安全进行系统的评价和改进。我们要求,而不是只在判决一级进行系统评价。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年2月16日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员