This article introduces a new physics-based method for rigid point set alignment called Fast Gravitational Approach (FGA). In FGA, the source and target point sets are interpreted as rigid particle swarms with masses interacting in a globally multiply-linked manner while moving in a simulated gravitational force field. The optimal alignment is obtained by explicit modeling of forces acting on the particles as well as their velocities and displacements with second-order ordinary differential equations of motion. Additional alignment cues (point-based or geometric features, and other boundary conditions) can be integrated into FGA through particle masses. We propose a smooth-particle mass function for point mass initialization, which improves robustness to noise and structural discontinuities. To avoid prohibitive quadratic complexity of all-to-all point interactions, we adapt a Barnes-Hut tree for accelerated force computation and achieve quasilinear computational complexity. We show that the new method class has characteristics not found in previous alignment methods such as efficient handling of partial overlaps, inhomogeneous point sampling densities, and coping with large point clouds with reduced runtime compared to the state of the art. Experiments show that our method performs on par with or outperforms all compared competing non-deep-learning-based and general-purpose techniques (which do not assume the availability of training data and a scene prior) in resolving transformations for LiDAR data and gains state-of-the-art accuracy and speed when coping with different types of data disturbances.


翻译:本条引入了一种新的基于物理的僵硬点定点调整方法,称为快速引力法(FGA)。在FGA中,源点和目标点组被解释为硬质粒子群群群群,以全球倍增关联的方式与质量相互作用,同时在模拟重力场中移动。通过对粒子及其速度和偏移的二阶普通运动差异方程式进行明确的力学模型,实现了最佳对齐。通过粒子团团体将更多的校准提示(点或几何特征,以及其他边界条件)并入FGA。我们提议了点质量初始化的平滑粒子质量类型功能,这可以提高对噪音和结构不连贯的强度和结构不连贯状态进行互动。为了避免全点互动的令人望性四边复杂性,我们调整了Barnes-Hut树,以加速力计算并实现准线性计算复杂度。我们表明,新的方法类别在以前的校准方法中找不到特征,例如高效处理部分重叠、不相交点取样密度密度,以及适应大点质量云层质量的准确性,用于点初始质量质初始变异性变,而不是实验性变换数据,在先变的轨道上进行。

0
下载
关闭预览

相关内容

MASS:IEEE International Conference on Mobile Ad-hoc and Sensor Systems。 Explanation:移动Ad hoc和传感器系统IEEE国际会议。 Publisher:IEEE。 SIT: http://dblp.uni-trier.de/db/conf/mass/index.html
专知会员服务
32+阅读 · 2021年7月1日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
42+阅读 · 2020年12月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
A fresh take on 'Barker dynamics' for MCMC
Arxiv
0+阅读 · 2021年9月2日
Arxiv
4+阅读 · 2019年1月1日
Arxiv
6+阅读 · 2018年10月3日
Arxiv
4+阅读 · 2017年1月2日
VIP会员
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员