The variety of data is one of the important issues in the era of Big Data. The data are naturally organized in different formats and models, including structured data, semi-structured data, and unstructured data. Prior research has envisioned an approach to abstract multi-model data with a schema category and an instance category by using category theory. In this paper, we demonstrate a system, called MultiCategory, which processes multi-model queries based on category theory and functional programming. This demo is centered around four main scenarios to show a tangible system. First, we show how to build a schema category and an instance category by loading different models of data, including relational, XML, key-value, and graph data. Second, we show a few examples of query processing by using the functional programming language Haskell. Third, we demo the flexible outputs with different models of data for the same input query. Fourth, to better understand the category theoretical structure behind the queries, we offer a variety of graphical hooks to explore and visualize queries as graphs with respect to the schema category, as well as the query processing procedure with Haskell.
翻译:数据的多样性是大数据时代的重要议题之一。 数据自然以不同格式和模型( 包括结构化数据、 半结构化数据和无结构化数据) 组成数据。 先前的研究设想了一种方法, 利用分类理论, 使用一个系统分类分类和实例类别来抽象多模型数据。 在本文中, 我们展示了一个系统, 叫做多分类, 处理基于分类理论和功能性编程的多模型查询。 这个演示围绕四个主要情景进行, 以显示一个有形系统。 首先, 我们展示了如何通过装入不同数据模型, 包括关系、 XML、 关键值和图形数据来构建一个系统分类和实例类别。 其次, 我们展示了几个通过使用功能性编程语言 Haskell 进行查询处理的查询实例。 第三, 我们用不同的数据模型来演示同一输入查询的灵活产出。 第四, 为了更好地了解查询背后的分类理论结构, 我们提供各种图形钩, 以探索和直观查询, 作为与 schema 类别有关的图表, 以及用Haskeell 的查询程序进行查询程序 。