We propose a novel coupled rejection-sampling method for sampling from couplings of arbitrary distributions. The method relies on accepting or rejecting coupled samples coming from dominating marginals. Contrary to existing acceptance-rejection methods, the variance of the execution time of the proposed method is limited and stays finite as the two target marginals approach each other in the sense of the total variation norm. In the important special case of coupling multivariate Gaussians with different means and covariances, we derive positive lower bounds for the resulting coupling probability of our algorithm, and we then show how the coupling method can be optimised using convex optimisation. Finally, we show how we can modify the coupled-rejection method to propose from coupled ensemble of proposals, so as to asymptotically recover a maximal coupling. We then apply the method to derive a novel parallel coupled particle filter resampling algorithm, and show how it can be used to speed up unbiased MCMC methods based on couplings.


翻译:我们建议一种新颖的结合拒绝抽样方法,从任意分布的混合中取样。 这种方法依赖于接受或拒绝来自支配边缘的混合样本。 与现有的接受拒绝方法相反, 提议方法的执行时间差异是有限的, 并且随着两个目标边际在整体变异规范的意义上相互接近而保持有限。 在以不同方式和共变方式混合的多变量高斯人的重要特殊案例中, 我们得出正下限, 从而得出我们的算法的合并概率, 然后我们展示如何使用 convex 优化来优化配对方法。 最后, 我们展示了我们如何修改组合截取方法, 以便从混合的组合中提出提议, 以便尽可能地恢复最大组合的组合。 然后我们运用这种方法来获取新的平行的粒子过滤抽取算法, 并展示如何使用它来加速基于合并的不偏向MC方法 。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Warped Dynamic Linear Models for Time Series of Counts
Arxiv
0+阅读 · 2022年4月14日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员