We propose a novel coupled rejection-sampling method for sampling from couplings of arbitrary distributions. The method relies on accepting or rejecting coupled samples coming from dominating marginals. Contrary to existing acceptance-rejection methods, the variance of the execution time of the proposed method is limited and stays finite as the two target marginals approach each other in the sense of the total variation norm. In the important special case of coupling multivariate Gaussians with different means and covariances, we derive positive lower bounds for the resulting coupling probability of our algorithm, and we then show how the coupling method can be optimised using convex optimisation. Finally, we show how we can modify the coupled-rejection method to propose from coupled ensemble of proposals, so as to asymptotically recover a maximal coupling. We then apply the method to derive a novel parallel coupled particle filter resampling algorithm, and show how it can be used to speed up unbiased MCMC methods based on couplings.
翻译:我们建议一种新颖的结合拒绝抽样方法,从任意分布的混合中取样。 这种方法依赖于接受或拒绝来自支配边缘的混合样本。 与现有的接受拒绝方法相反, 提议方法的执行时间差异是有限的, 并且随着两个目标边际在整体变异规范的意义上相互接近而保持有限。 在以不同方式和共变方式混合的多变量高斯人的重要特殊案例中, 我们得出正下限, 从而得出我们的算法的合并概率, 然后我们展示如何使用 convex 优化来优化配对方法。 最后, 我们展示了我们如何修改组合截取方法, 以便从混合的组合中提出提议, 以便尽可能地恢复最大组合的组合。 然后我们运用这种方法来获取新的平行的粒子过滤抽取算法, 并展示如何使用它来加速基于合并的不偏向MC方法 。